СЕРИЯ 3.017-3

ОГРАЖДЕНИЯ ПЛОЩАДОК УЧАСТКОВ ПРЕДПРИЯТИЙ, ЗДАНИЙ И СООРУЖЕНИЙ

ВЫПУСК 1

ЖЕЛЕЗОБЕТОННЫЕ ЭЛЕМЕНТЫ ОГРАД

робочие чертежи

PA3PABOTAHЫ

ПРОЕНТНЫМ ИНСТИТУТОМ N-2

ГЛ. ИНЖЕНЕР ИН-ТА — В.П. АРОНОВ

ГЛ. ИНЖЕНЕР ПРОЕКТА ULL M.A. БЕЛЕЦКИЙ

HIBEPHALEHUI UNPABNEHNEM NPOEKTUPOBAHNA N NHIMEHEPHLIX NBUICKAHNN MUHETPOA DOCCHA, NUCLHO OT BURDEN 1/427 BEELEHUI B LENCTBUE NPOEKTHUM NHCTHTYTOM N2 C OLOS 1993 (...)

				_			2
	UBDSHAYEHUE AOKYMEHTA	HANMEHOBAHNE	LTP;		OBOBHAYEHHE AORYMEHTA	Hanmenosahue	CTP
-	3.017-8.1 -170	Tethnueckoe onkgahke	3	}	3,017-3,1 -27	GEIKR. 07; 68	29
	— ž.HK	HOMEHKAATYPA USAFANH	6		- 28	CETER C3, CIO	30
٠.,	- 3	NAHEAL 1/15 30,20	7		- 29	KAPKAC NAOCKHU KPI, KP2	30
	4	NAMEAD 1118 40.20	8		-30	KAPKAC NABCKHU KP3; KP5, KP6	31
	-5	ПАНЕЛЬ 2 ПЬ 30.16; 2 ПБ 30.20	9		31	KAPKAC NADEKHH KP1, KP8	31
	-£	NAHEAS 3 716 30.20	10		- 32	KAPKAC NAOCKHH KP9, KP10, KP11.	32
	-7	MAHENS 3.76 40.20	//	1 1	-35	KAPKAC NAOCKUH KP4, KP12	32
	-8	YSEA I DENOMBETO PACKONA CTANH HA TIAHENH	/2	1 1	-34	HELENUE SAKAAAHOE MH2, MH3	53
	-9	ПАНЕЛЬ ЦОКОЛЬНАЯ ПЦ 28,6, ПЦ 30,8	13		-35	MARENUE SAKNALHOE MH!	33
	- 10	ФУНДАМЕНТ \$9.7.5 , \$12.7.5	14		- 35	NSAEANE SAKAAAHOE MH4	34
	-#	CTOA5 10 182 1 C 188	15		-3 7	NETAS 11, 113	54
	-12	CTOA6 20 24 a 20 24 H	16		-38	NETAR 112, 114	35
1	- 13	G1015 2 C 24 N 2 C 24 A	17	1 [-39	NETAR 115	35
	- 14	APMAPOS ANNI CTORGA 2014 BEADMOOTS PAGROJA GTARM HA CTORS 2014 a. 2024 M	18	.	-40	TIETAS 16	35
	- <i>IS</i>	CTOA6 30 504 30 30 K	19	1 [,	
	- 16	GTONE: 30 30 A 30 30 C	20	1 1			1
	-/7	APMINOBAHUE GTOASA. SC SO, BELOMOGIS PAGKOAA	21				-1
	- 18	CTAAN HA CTOAS SC 30 Q. 30 80 K VSEA II; II: E EAOMOCTO PACXO4A CTAAN HA GTOAS SC 30 A. 6 G 30 C	22			·	ļ
	- /3	KAPKAG TPOCTPANGTBENHOIN KTT	25]
	- 20	EAPLAC RPOCTPAHCTBEHHOLD KAZ	24	1 1			1
	- 21	КАРКАС ПРОСТРАНСТВЕННЫЙ ВПЗ, КП4	25			•	
<u>.</u>	-22	КАРКАС ПРОСТРАНСТВЕННЫЙ КП5	25				
Н ДАТА ВЗАМЕНТИВА	- 25	KAPKAG TIPOGTPAHOTEEHHEIH KAG	27	псь и дага Волиен нива		•	. [
346	-24	CETER CI, CZ	28	1 13			ļ
-	- 25	CETKA 63, 64	- 28				
447.	—26	CETER C5, C6	29	447		•	
امًا	-			9		•	
101KC	HAM OTA MAZINOS AND HEROTE CA	3.017-3.1					
TOARI	MAGNEY HORHKOOK Skele +			Moun			
3	MHH. TAPAGOOD STATE	CTABUS INST A	HETOE 2	1 3		·	
HI'S NOTOAL	inog. maneger cress	COAEPHANNE		W _o W	ſ		Just
20.0		THEN KILL	INIAI #5	HIB.Nº NOAA.	[3.017-3.1	2
		KONU. POBRA: 900 PM.97 R.4				копировял: Терия	r 84

MU MERESOGETONHOIX PREMENTOR OFFRA- NAMEREN. PYHARMEHTOR, YOKORBHBIX NAMEREN M CTOREOR.

1.2 Grendi ofpar и уклзания по применению и расчету конструкции приведены в вып. О.

13 KAHAOMY THEY WERESDEETOHHOIX SAEMEHTOS TRUCBOEHO YCKOSHOE OGOSHAYEHUE (MAPKA) 8

COOTBETCTENH C [OCT 23009-78 "KOHGTPYKUNH N N34ENNA BETCHHOIE H MENESOBETOHNOIE CEOPHOIE.

YCAOBHLIE OSOSHAUENHA (MAPKU). MAPKH MAAENHU MMEHOT GAEAVHUUYHO GTPYKTYPY:

Х Х Х Х Х ТИПОРАВМЕР ИЗДЕЛИЯ

НАИМЕНОВАНИЕ ИЗДЕЛИЯ (ПБ - ПАНЕЛЬ

ЖЕЛЕЗОБЕГОННАЯ, С - СТОЛБ НЕЛЕЗО
БЕТОННЫЙ, ПЦ - ПАНЕЛЬ ЦОКОЛЬНАЯ,

ТР-ТУНДАМЕНТ НЕЛЕЗОБЕГОННЫЙ)

ГАВАРИТНЫЕ РАЗМЕРЫ ИЗДЕЛИЯ В

ДЕЦИМЕТРАХ.

ИНДЕКС, ХАРАЕТЕРИЗУЮЩИЙ РАВНОВИДНОСТЬ ИЗДЕЛМЯ ПО ЗАКЛАДНЫМ

HARPMEP: 1763020 - MAMEAN MERESOBETOHHAR MERBOTO TURDPASMERA ARMHOÙ 30M BUTOT OÙ 20M
1°C 18G - CTOAB MERESOBETOHHUÙ
1-TO TURDPASMERA (ARROPAAN BUGOT PÙ À-1,2 M
AMHOÙ 18M , PASHOBHANOCTU Q NO SAKRAAHUM
BAEMENTAM.
174 306 - MAHERN LOKONNHAR MERESOBETOH-

PAEMEHTAM.

ная. Данной 5,0 м, высотой 0,6 м. T 9.75 - T + A TEXHUYECKUE TPEGOBAHUS.

A.I. BETOH

2.1.1 МАТЕРИАЛЫ, ПРИМЕНЯЕМЫЕ ДЛЯ ПРИГО-ТОВЛЕНИЯ ВЕТОНА, ДОЛИНЫ GOOTBETGTBOBATO ДЕЙСТВУЮЩИМ GTAHAAPTAM НАИ ТЕХНИЧЕС-КИМ УСЛОВИЯМ НА ЭТИ МАТЕРИАЛЫ.

2.1.2. KAAGG BETOHA AOAMEH TIPUHMMATAGS 8 GOOTBETGISHU G YKASAHЫM 3 HOMEHKAATYPE N 8 PASOYUK YEPTEWAX.

2.1.5. GPEAHSS TROTHOGTS SETONA C SYCTOM APMATYPH OPHISTA ARS TRHEROTO SETONA -25 KH/M⁸

2.1.4 MAPKE BETOHA DO MOPOJOGIONHOCIU.

N 8840HERPOHULAEMOGIN HASHAYAEICA 8 KOHKPETHOM POEKIE 8 GOOTBETGIBHU C TPEBOBAHUAMH FRASSI GHUR 2.03,01-84* 8 JABUGUMOCTU OT

RPUPOAHO-KAUMATUYE GKUK YGAOBUM PAHOHA
CTPOUTEASGIBA.

2.2 APMATTPA

2.2.1 PASOVAS APMATYPA TIAHEREN TPHHS-TA MS GTARM KRAGGA A-ÜL M MS XORGAHO-TAHY-TOM TIPOBISTOKH KRAGGA BP-I, PASOVAS APMATYPA GTORSOB-MS GTARM KRAGGOB A-I M BP-I. [FOCT 578]-82*M FOCT 6727-804.

2.2.2 MOHTAHHBIE NETAU GAEDYET MSFOTAB-AMBATB MB FOPRYEKATAHHOÙ FAADKOÙ AP-MATYPHOÙ BTARÙ KAREGA A-F NO FOCT 5781-82. MAPKY CTARU ПРИНИМАТЬ COFRAGHO УКАЗАНИЙ П. 2.24 CHUN 2.03.61-84*

HAY OTA	TAPSTHOS VMHTPHEECKMI	1201	5.017-3.1	. 1 7/1	,,	
Th EDEU.	Ногикова	300	J. 011 V. 1		<u> </u>	
HHH.	TARAGOEA	12-1	→	CTABHS	SHET	LHOTER
TIPOS.	HORNZOSA	50 mm	🗌 Техническое	P		ر د
	 		ORMGAHUE	TOEK II	idi l	HETHYM
	·	<u> </u>	KERUPDE AA:	470 PA	THE HA	7

MARKE WARTA WARK

W + 6.00 . a west

- 2.3. Указания по изготовлению.
- 2.3.4. При изготовлении железоветонных изделий необходимо выполнять требования гост (3015. О 8.3% и настоящей проектной до-кументации.
- 2.3.1. HEAE30 SETONHUE SAEMENTU MITO-TEBASHOT B CTRABHUX POPMAX.
- 2.3.3. При изготовлении пянелей должен быть обеспечен пооперационный технологический контроль ня всех стядиях производства
- 2.3.4. CETKU U KAPKACH MBFOTOBOSHOT

 TIPH ROMOWN HONTAKTHOÙ TOYEYHOÙ CBAPKU,

 2.3.5. CBAPKY TIPOUBBOANTE B COOTBETCTBUU

 C FOCT 5264-80.
- 2.3.6. АРМЯТУРНЫЕ ЗЯКЛАДНЫЕ И СОЕДИНИТЕЛЬНЫЕ ИЗДЕЛИЯ ДОЛИНЫ ОТВЕЧЯТЬ ТРЕВОВЯЖИЯМ ГОСТ 10922-90.
 2.3.7. ПРОЕКТИВЕ ПОЛОЖЕНИЕ АРМЯТУРНЫХ
 ИЗДЕЛИЙ И ГОЛЩИНУ ЗЯЩИТНОГО СЛОЯ БЕТОНА
 ОБЕСПЕЧИВЯЮТ ПРОКЛАДКЯМИ ИЗ ПЛОТНОГО
 ЦЕМЕНТНО- ПЕСЧАНОГО РЯСТВОРЯ ИЛИ ПЛЯЕТМЯССОВЫМИ ФИКСЯТОРЯМИ.
- 7.3.8 ДЛЯ УДОБСТВЯ ВЫЕМКИ ИЗДЕЛИЙ

 ИЗ ОПЯЛУБКИ РЕКОМЕНДУЕТСЯ СЛЕДУЮЩИЙ

 СПОСОБЯ СНЯЧИЛА ОСУЩЕСТВЛЯТЬ ОТРЫВ НИШ
 НЕЙ ЧЯСТИ ПЯНЕЛИ ЗЯ 2 ПЕТЛИ Я ЗЯТЕМ

 ПОДБЕМ ВСЕЙ ПЯНЕЛИ ЗЯ 4 ПЕТЛИ ПРИ

 ПОМОЩИ СПЕЦИЯЛЬНОЙ ТРЯВЕРСЫ.

HIB. H. MOBOL DOBRING H. BRITE. PROMED BYK.

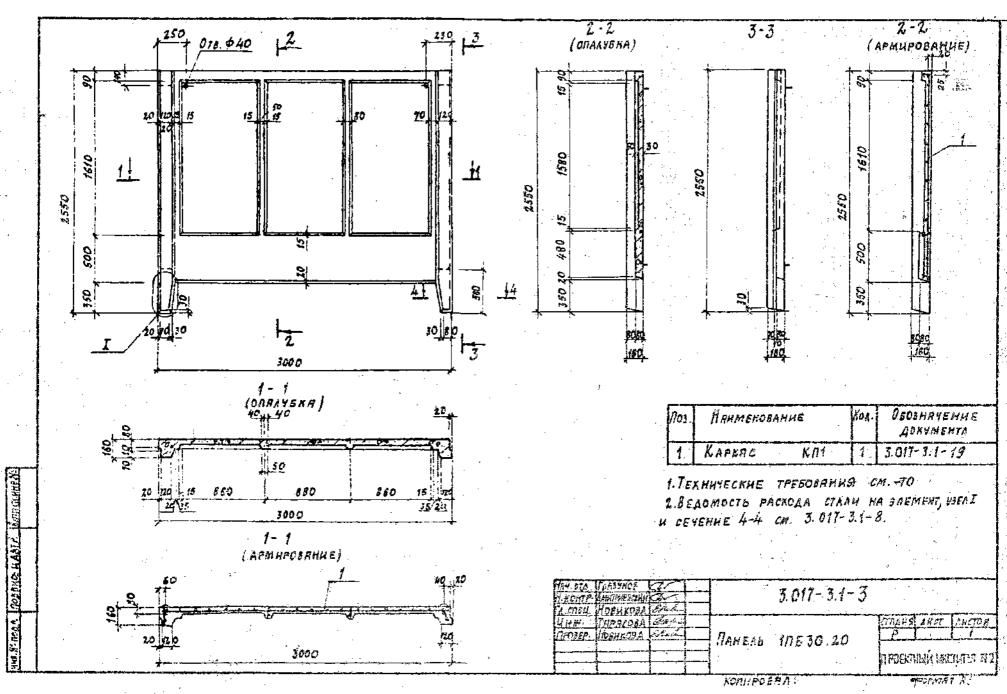
2.4. YKASAHAS DO MPHEMKE. 2.4.6. ПРИЕМКУ НЕЛЕЗОБЕТОННЫХ ИЗДЕЛИЙ ВЫ ПОЛНЯТЬ В СООТВЕТСТВИН С ЧИЗИНИЯМН ГОСТ 13015.1-61.

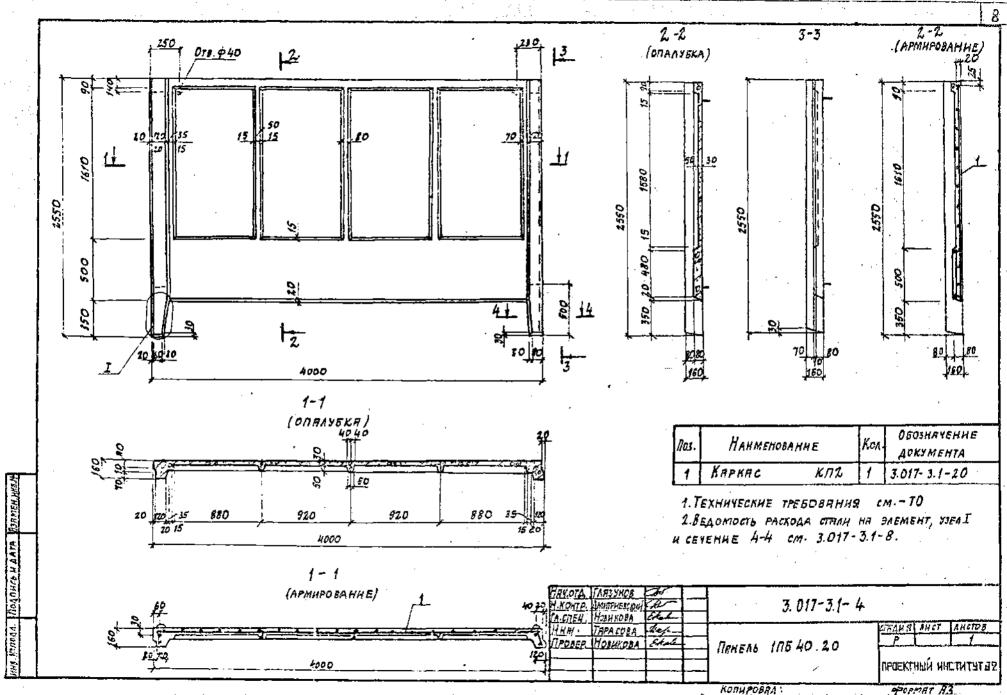
- 25. Указания по транспортированию и хранению.
- 2.5.1. Трянспортировяние и хранение железоветонных изделий выполнять в соответствии с укязяниями гост 13015.4- 84* и ня стоя шей проектной документяции.
- 2.5.2. Ряспялувку, СКЛАДИРОВЯНИЕ И ТРЯНС-ПОРТИРОВЯНИЕ ПЯНЕЛЕЙ ОГРЯД И СТОЛВОВ ПРОИЗВОДЯТ В ГОРИЈОНТЯЛЬНОМ ПОЛОМЕНИИ. ЦОКОЛЬНЫЕ ПЯНЕЛИ ИЗГОТОВЛЯЮТ И ТРЯНСПОР-ТИРУЮТ В ВЕРТИКИЛЬНОМ ЛОЛОМЕНИИ.
- 2.5.3. ПРИ CKAAAUPOBAHHU MAMEAB HUMHE-HR 4 AEPE ---TO PSAA CAEAYET YKAAA618 ATB CEYEHHEM 100×200 × 40 (h) BSHHWE PROKNAAKH PRODOLOMENHOLE NO LAUNE CTOCK HA PACCIOS-HUU 100 MM OT BEPXH U 450 MM OT HUJA панелей. Прокладки MEMAY U3 A E NUS MU PACHONAFATHES с одной плоскости A O A W M bl с нинними прохладками и иметь TE WE PRIMEPHI
- 2.5.4. При транспортировянии HBAENHH TPOKLADOK HEDEKODHMO DOMUMO STUX ПОЛНИТЕЛЬНО С ПОМОЩЬЮ ПРОКЛЕДОК НЯ ТЕХ НЕ NAHE-YPOBHSX PACKAUHUTS CPEAHIOIO YACTO TPAHCHOPTHPOBKOÚ REW. TRHEAM ΠΕΡΕΔ DONWHU GAITE HRAEHHO BRKPERAEHU B FO PUSONTANDHOM TAK H CMEWEHUS KAK B BEPIUKANDKOM Η ΠΡΑΒΛΕΗΚΑΧ.
- 2.5.5. ПРИ СКЛАДИРОВЕНИИ ИЭДЕЛИЙ, Я ТЯКИЕ ДЛЯ ПОГРУЗКИ ИХ НЯ ЯВТОМОБИЛЬНЫЙ И МЕЛЕЗО-ДОРОЖНЫЙ ГРЯНСПОРТ, НЕОБХОДИМО ПРИМЕНЯТЬ СПЕЦИЯЛЬНЫЕ ТРЯВЕРСЫ С УЕТЫРЫМЯ ПОДВЕСКЯМИ,

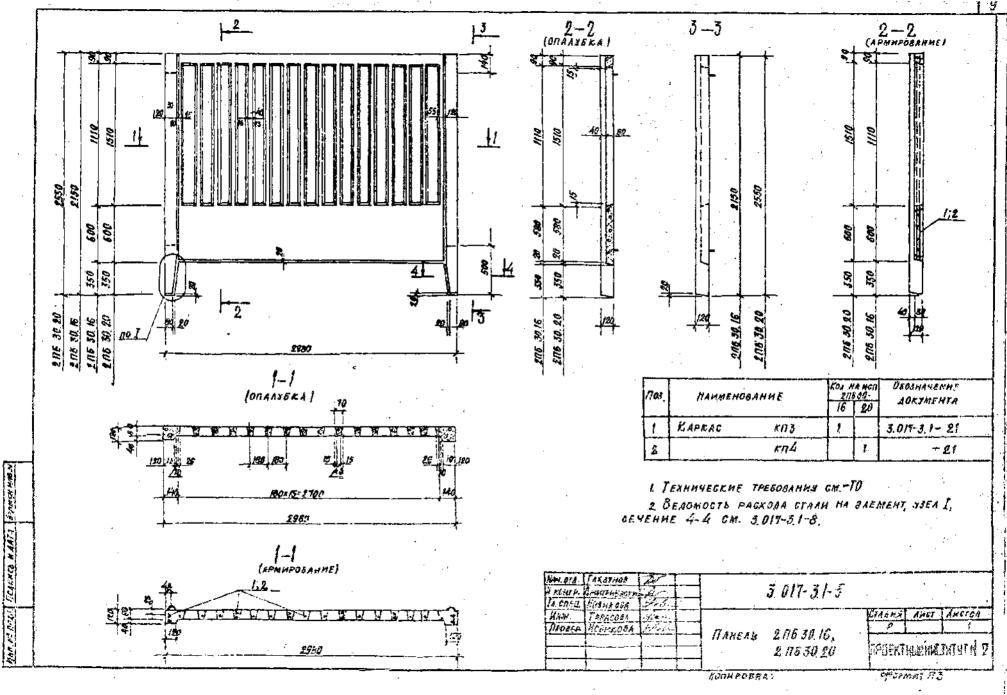
2.5.6. В ЫСОТУ ШТАБЕЛЯ ПРИ СОБЛЮДЕНИИ МЕР, ИСКЛЮЧАЮЩИХ ВОЗМОННОСТЬ СМЕЩЕНИЯ ПАКЕЛЕЙ ПРИ ТРАНСПОРТИРОВКЕ, ПРИНЯТЬ НЕ БОЛЕЕ 2,5м.

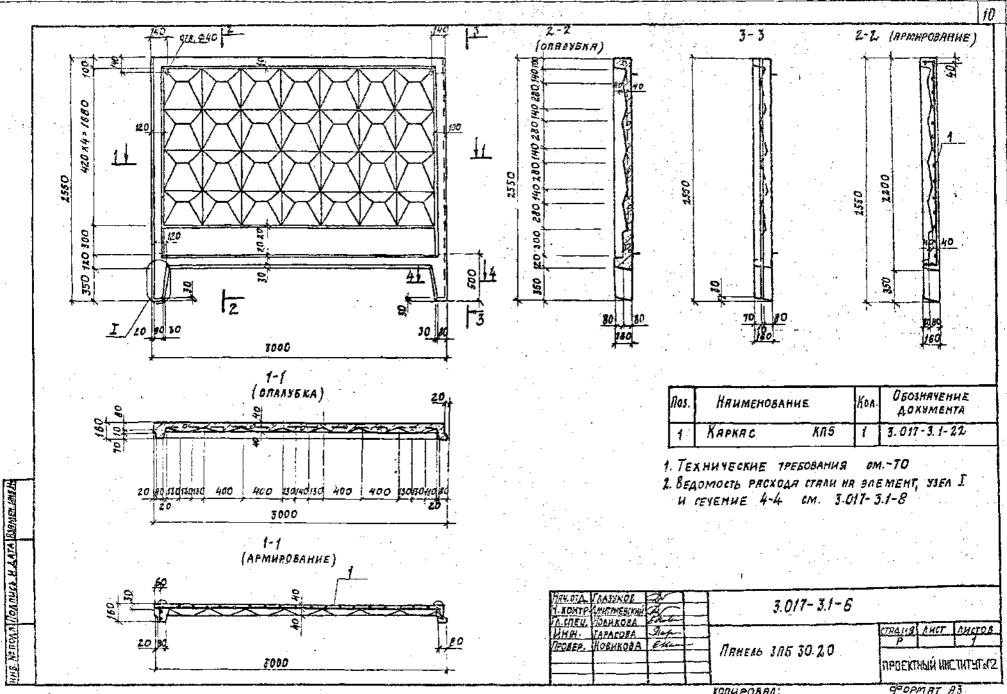
3.017-3.1- 1 TO

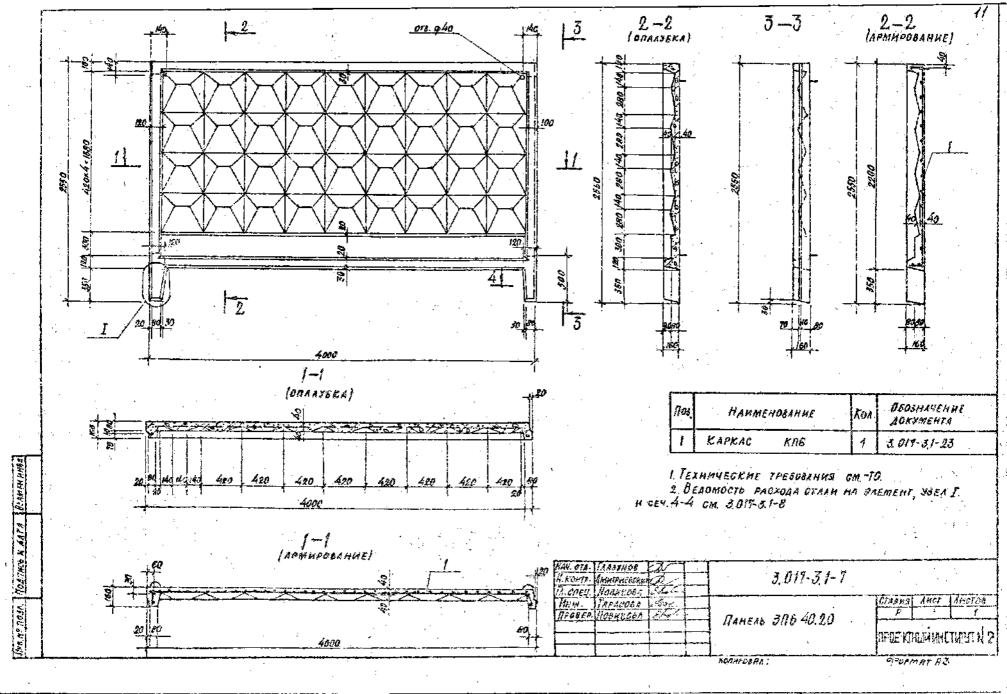
2. 6. POUSEOACTED PRECT 2.6.1. TIPU THOU 3 BOACT BE MONTAWHOIX PYKOBOACTBOBATACA YKA-CAEAYET PREOT CH u 17 3.03.01-87. BAHUSMU 2.7. МЕТОДЫ ИСПЫТАННЯ И КОНТРОЛЯ 27.1. Испытания конструкций оград производить HEPRIPYWAIOWИМИ МЕГОДАМИ В COOTSETCTSUNCTPE-БОВАНИЯМИ ГОСТ 13015.1-81* (ИЗМЕНЕНИЕ 1) 2.7.2. Контролю подленат прочность, жесткость и трещиностой кость кокструкций. 2.7.3 MECTA PACHONOMEHUS YYACTHOB KOHCTPYK-ЦИЙ В КОТОРЫХ НОНТРОЛИРУЮТСЯ ПОКАЗАТЕЛИ принять: 1 AAS DAHEAEH AAG CTOABOB AAS - YHAAMEHTOB HA SPORME HATA CTAKRHA ДЛЯ ЦОКОЛЬНЫХ ПАНЕЛЕЙ DAKEAH K RECHSCOACTBY PEROMEHANOTER MERESOBETOHILLE DAHEAM L= 30M. BAHEAU L=40M PASPAGOTAHU AND SASOADB, FAE TEXHONOMS MAHENEN VHE OCSOEHR. 3.017- 3.1 - 110

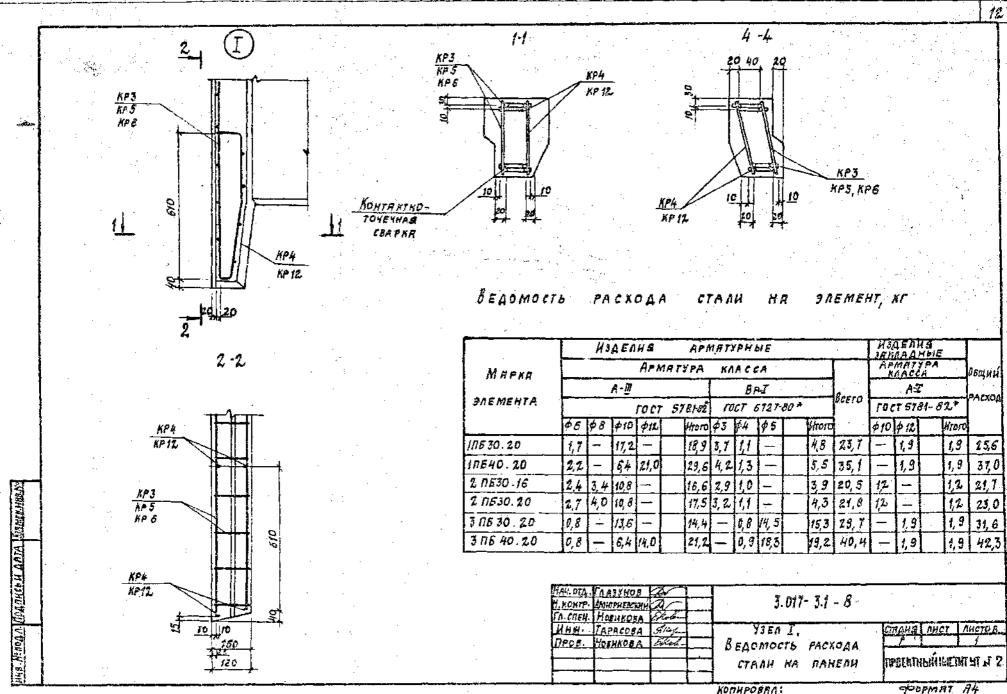

KODHPOBAA:

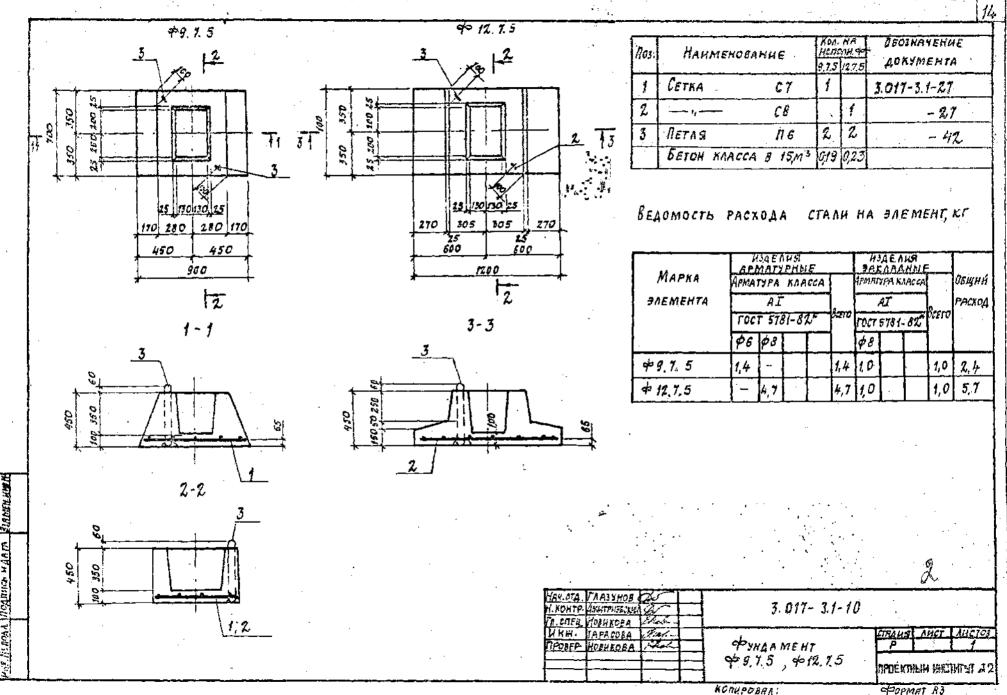

でついかみかんり

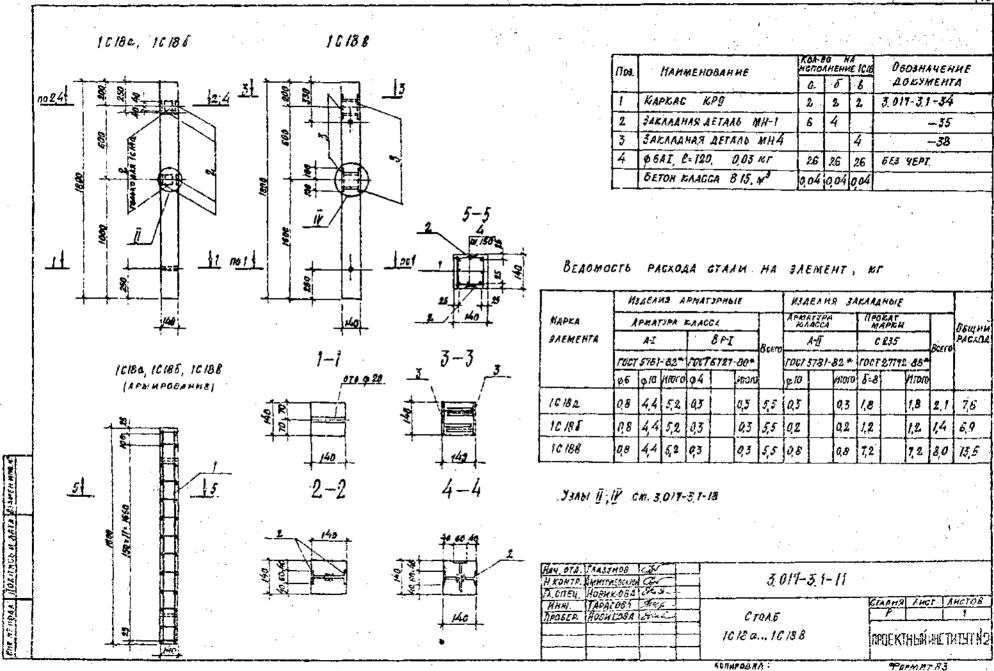

STREET STAUMS HAND STEMBLINE

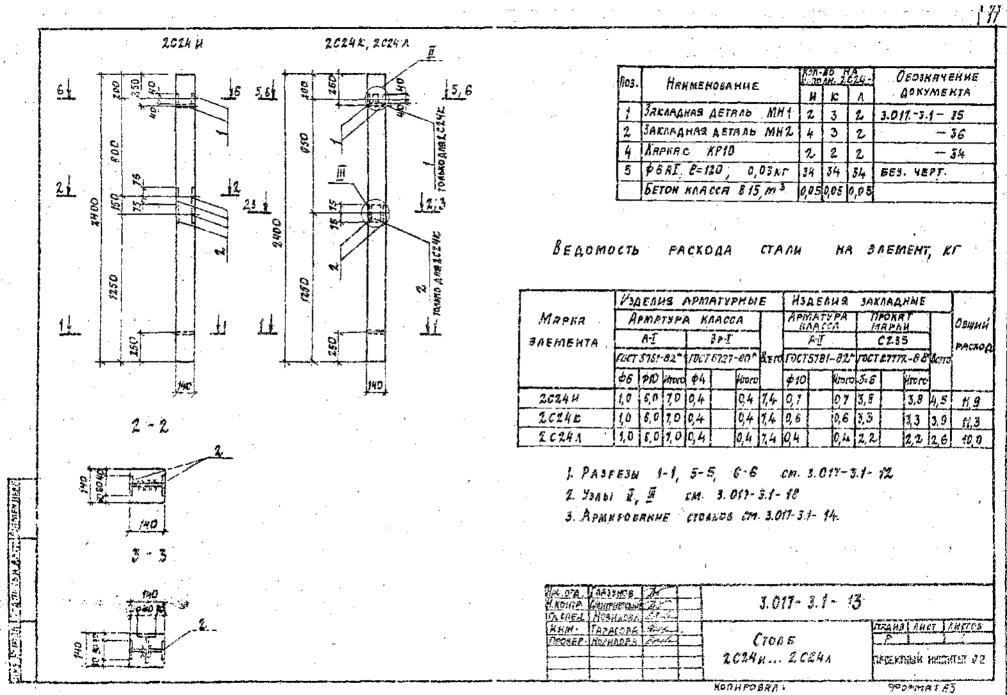

			· ·	·	<u> </u>					· · · · · ·	· · · · · · · · · · · · · · · · · · ·			20.		·		· · · · · · · · · · · · · · · · · · ·	
	ackn3	MAPKA	PAE	MEPOI, MM		KAA GG 8270MA	PAGX MATEP	04 Haaoo	MAGGA.	Эскиз	MAPKA	PA	вжеры, ММ		CAACC SETONA	PAGZOA MATEPH	1	MAGCA	
			4	8	h		BETBH,	GEARS.	K/F			a	g	h		GET OH . B	GTARA,		
	J 1000	1/16 30, 20	3000				0,38	25,6	1400		2 € 24 €		:	2400		0.05	10,0	130	1
		185 40, 20	4000	160	2000	225	0,5	37,0	1700		3 C 50 a	1					12.4		
	****		-						1		5 c 30 i	1			. '		10,9	1	$\int f^{\prime}$
		-		<u> </u>							8c308						97		('
!	\$ 0000000	2718 30.16		†	1500	 	0,27	217	1200		3 c 30 %	1	,				15,3	1	['
	10030030	2716 50,20	3000	120	2000	825	03!	23.0	1300		3 c 30 q	•					12,9	1	
							-7	1		╎ ╎┾┖┙ ╸╏	3c30e	140	140	3000	815	0.08	11,1	150	
	4	*	-	<u> </u>	<u> </u>		_ - _	 			3 G 30 H	1					10,3	1	
Ì	1	3 /1 \$ 30,20	3000	<u> </u>			0.48	31.6	1700		3 c 30 H	1				٠	12,0	[\ '
		3 115 40.20	4000	160	2000	825	0.84	42.3	2100		3 c 30 x			j			19,1	1	
	4-4	·									3 C 30 A	† !					11,0		
	₩/			<u> </u>	ļ -				 		3 C 80 M	1 '		<u> </u>			14,1	1	'
	**	1714 28,6	2750				0,/2	4.96	300		3 c 30 H	j 1		}]		16,9	1	ן '
	1	ПЦ 30.6	2980	70	600	8 15	0,13	5,66	325		3c30 n	1					12,8		
	~ }	11.7		l				1,	020		3 C 30 P	1					11,5	1	
ł	-	T. 9.7.5	900	 	 		0,19	2,4	480		3 C 30 C	1		}			13,4	1	j
ł	~ D	P 12.75	1200	700	450	815	0,25	5,7	580			<u> </u>	!	L.,—		L	1		
	10		<u> </u>									.*		•					
	~ <u>†</u> _/	·	-	 	ļ				† -								· ·		
1	_ 	/c 18a				<u> </u>		7,6	-										
		1C 188			1800		0.04	6,9	100	, etc. e	1				٠.		•		
3	177	Ic 188		}				13,5	•	•	. v					•			
BAMEH HIGH		20240						10,2	1						••				
<u> </u>	4	20245			! :			9,0	1	•	, .		•						
		20246	140	140	2400	<i>\$ 15</i>	0.05	8,2	130			•			7.				1
2	╷ ┤ ┡┵	20242					7.	17.6	1		1			-				-	
\$		2 c 24 g					}	9,5	1			1		· ·				·	4
avou	1	20240	! .					8,8	d		MASSHOS ASS			3.017-3	1-2H	4			į
	<u> e</u>	2 C 24 H]				15,4	1	TA.GREH. HE	OBUKOBA ERA	6	<u> </u>			STAR	ies Ingr	AKCTO8	1
H'6. A' BOAR POATHUS II AATA		2 C 24 N]				11,9	1	MHH. TA	APAGOBA AKAN OBHKODA EHAS	7		HKAATSI	O A	P		1	1
¥ }		2 C 24 K	1			,		11,3	· !	nree, m	UOHEGOA 2963		H3.	ee an ù		le le	KTHBÁ V	HETHTHE	
12	<u> </u>	<u> </u>	<u> </u>	<u>. </u>	<u> </u>		<u></u>	1,*	<u>لــــــــــــــــــــــــــــــــــــ</u>							J.,	., .,	, 1 +2 1	1


#AGUPARGA








FORMATAS

KONKPOERA!

HHE DEMAN TO YOUR PLANTS FREE HEED

1 3AKAAAHAA AETAAB MH 1 8 4 2 4 6 4 3. 2 3AKAAAHAA AETAAB MH 4 4 4 4 4 5 5 \$\frac{1}{2}\$\$ \$\frac	Овознячение ДокументА ,017-J.1- 35 -38 E3. ЧЕРТ
1 3AKAAAHAS AETAAB MH 1 8 4 2 4 6 4 3. 2 3AKAAAHAS AETAAB MH 4 4 4 4 5 3 \$\phi 10A \overline{I} \cdot \mathcal{E} = 80 \cdot \	ДОКУМЕНТА .017-11-35 -38 TES. YEPT
1 3AKAAAHAS AETAAB MH1 8 4 2 4 6 4 3. 2 3AKAAAHAS AETAAB MH4 4 4 4 3 \$\phi 10A\textsup \cdot \chi 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 \cdot \chi AI, \chi 2 \cdot 3 \cdot 5 \chi AI, \chi 2 \cdot 120 \cdot 0,05 \cdot 0	~ 38 E3. 4EPT ·
3 \$\phi 10A\Pi; \mathcal{E} = 80; 0,05\Kr	ES. YEPT
3 \$\phi 10AL \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
5 \$\phi 6AI, \(\mathbb{E} = 120 \); \$\oldots 0,03 \text{ NT} \\ 34 \\ 3	
DETOH KARCCA 8 15, M 3 0,05 0,05 0,05 0,05 0,05 0,05	.017-3.1-34
	ES YEPT
	3
32.50	
BEADMOCTE PACKOLA CTANH HA PAEME	нг, кг
BEADMOCT B PACKODA CTADU HA PAEME	
USA FAUS APMATYPHUE VSAENUS SHKAA	AHUE
MAPKA APMATYPA KIACCA APMATYPA TIPO	
PAEMENTA AT BOT AT C	215 PACKOA
1067 5781-82" 1067 6727-80" BCE10 TOCT 5781-82 TOCT 2	7772 -88 BCETO
φ6 φ10 Wiror φ4 Wiror φ10 Wiror δ=8	Virord
2 624 0 1,0 6,0 7,0 9,4 9,4 7,4 9,4 9,4 2,4	2,4 2,8 10,2
20248 1,0 60 7,0 0,4 0,4 7,4 0,4 0,4 1,2	1,2 1,6 9,0
2 C 2 4 6 1,0 5,0 7,0 0,4 0,4 7,4 0,2 0,2 0,6	96 0,8 8,2
20242 10 50 7,0 04 04 7,4 1,2 1,2 8,4	8,4 9,6 17,0
	1,8 2,1 9,5
2 CZ4E 1,0 60 7,0 0,4 0,4 7,4 0,2 0,2 1,2	1,2 1,4 8,8
2 C 2 4 H 1,0 C 0 7,0 0,4 0,4 7,4 0,8 0,8 7,2	7,2 8,0 15,4
25 90 25	
HAY. OTA. [NA34408] 7 027 3 4 44	
Н. КОНТР. ДМІПРИБІСКУН ДУ. 3. 017-3.1-14 ТА. СПЕЦ, НОВИКОВА СЛЕД.	
ИНИ ТАРАСОВА МАТ АРМИРОВЯНИЕ СТОЛБА 2С24. СТ ПРОВЕР НОВИКОВА ВИД ВЕДОМОСТЬ РАСКОДА	<u> Адия Листов</u>
CTANH MA CTORE : STORE	CEKLHPIN NHCINIAH
2 C2k a 2C2k H	Piperson of Parks

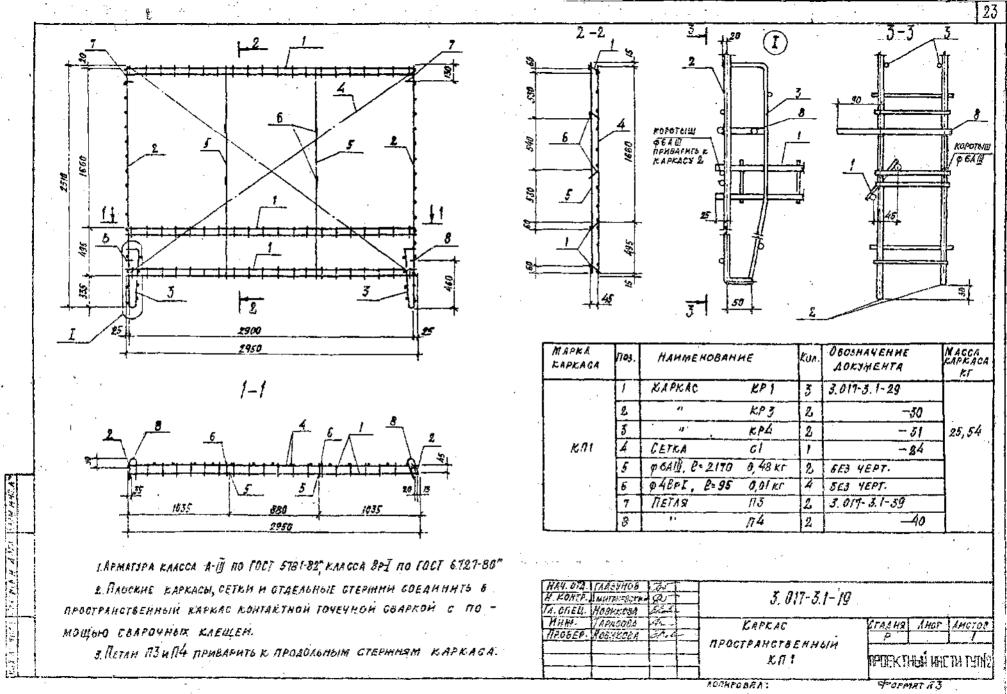
HIS HE HEAL POATHED HARTH BRANCH HIGH

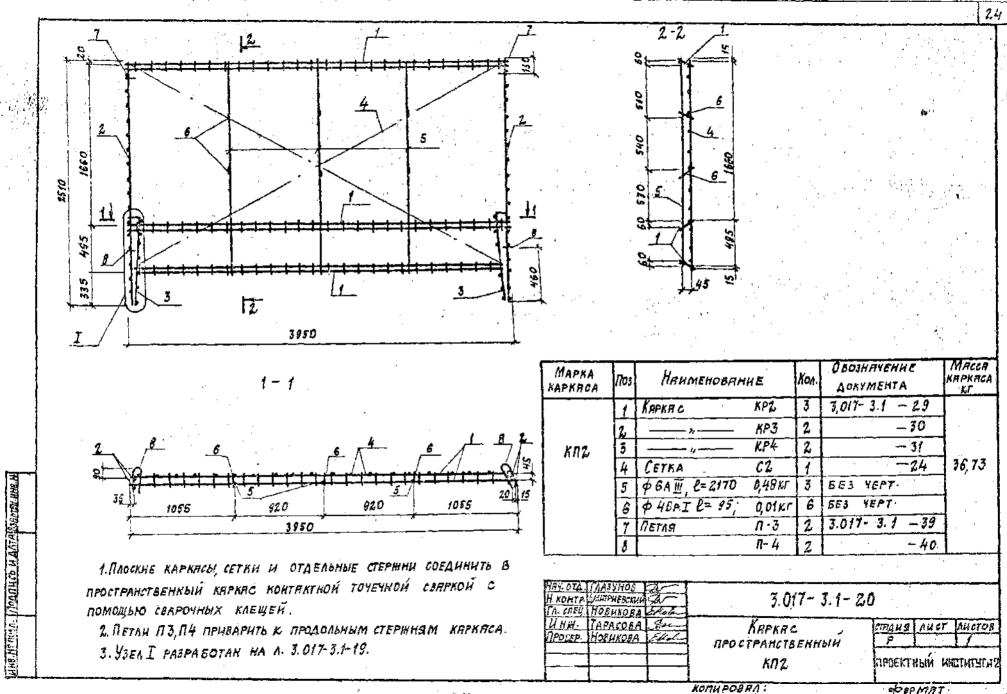
P DPMAT R3

КОПИРОВАЛ:

		h		No. De Co.
ī		200		
14.		1		:
		_ I		·*•
		150x 19 - 1450	0000	12.
مستئد				
		<i>SS</i> .		
·	40	ž2.	-1	· · ·
<u></u>	[-[<u> </u>	S		
2 3+		5		

PARA WY COAL MERCHOS WALLE GOODENHISE AS

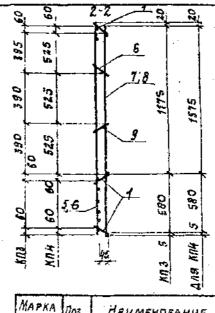

T03	MAUMEHOBAHHE	KOA	80 H	A HO	TOA	KEHP	ie š	G 50		1	0503HAYEHHE		
IVE,	mannenvannut.	a	8	8	Z	3	е	131	И	L	AORYMEHTA		
1.	JAKARAHAS AETAAD MH1	10	5	2	5	6	5	,	3	3	3.017-3.1- 35		
L	BAKAAAHAA AETAAD MH4				4					4	<i>−38</i>		
3	BAKAAAHAR BETAAL MH2	1				2	1	1	2	1	-36		
4	910A 11, E=80 , 0,05 KF	1	5	2	5		4	2	3	4	BES YEPT.		
5	KAPKAG KP11	2	2	2	2	2	2	2	2	2	5.017-5.1-34		
6.	& SAI, 8 = 120; 0,03 KT	42	42	42	42	42	42.	42	42	42	SES YEPT.		
	BETON KNAGGA B 15, m.3	0,06	0,06	0,06	0,06	0,06	0,06	9.06	1,06	0.06			


BEADMOCTE PACKOAS CIASU HA SAEMEHT, KE

	134	EAHS	APA	TATYPH	PIE		H34						
MAPKA	AP	MATY	PA	EARE 4		Γ		ATYPA Nacea	MAP.	er KH		Овигна	
BAEMEKTA		AI		BA		beer		Ad	C 2.			PACTOA	
	7	ocrs;	B)-82	\$0076727-80*			FOST	5781-82*	1907 27772 - 88ª				
	9.5	<i>\$10</i>	1110/6	84	4707 0		φ10 T	Hore	-6=8	מוטרא			
3 C 30 A	1,3	7, 2	8,5	0,4	0,4	8,9	0,5	0,5	3,0	3,0	3,5	12,4	
3 C 50 8	1,3	7,2	8,5	0,4	0.4	8,9	0,5	0.5	1,5	1,5	2,6	10,9	
3t50 t	1,5	7,2	8,5	0,4	0,4	89	0,2	0,2	0,5	0,6	0,8	9.7	
3c 3a t	1,3	7,2	8,5	0,4	0.4	85	1,5	1,3	5,1	5,1	64	15,5	
3030g .	1,5	7,2	8.5	0,4	04	8,9	0,6	0,6	3,4	3,4	40	12,9	
5 6 30 E	1,5	7,2	8,5	4,4	84	8,9	0,5	0,5	1,7	1,1	2.2	11,1	
3 ¢ 30 M	7,3	7,2	8,5	0,4	0,4	8,9	0,3	0,3	1,1	1//	1,4	10,3	
3830 M	13	7,2	8,5	0,4	0,4	89	0,5	0,6	25	25	3,1	12.0	
30 30 K	1,3	7,2	8.5	0.4	0,4	89	1.5	1,3	29	leg	162	19.5	

	TAASY408 Amhtphercker			3.017-3.1-	17
Нин.	HOEHROBA TAPACOEA HOEHROBA	Alak.		АРИНРОВАНИЕ СТОЛБА 3630	CTARHS ANCT SUGTOR
HENSEP.	ROOFEVOR	27.82.		BEADMOCTS PAGEODA GTARM KM GTORS! 3630 & 3630 &	ULIOEKIHPA, RACIATATA
<u> </u>	<u> </u>		1	ORANGE COM	POPHAR

OPERMET BY



1. ПАОСКИЕ КИРНИСЫ, СЕТКИ И ОТДЕЛЬНЫЕ СТЕРЖИИ СОЕДИНИТЬ В ПРОСТРАНСТВЕННЫЙ КАРКИС КОНТИКТНОЙ ТОЧЕЧНОЙ СВАРКОЙ

- с помощью свярочных клещей. 2. Петли R I, R2 приварить к продольным стериням керкеса.
- 3. YSEN I CM. ACKIMENTS. 017-3.1-19.

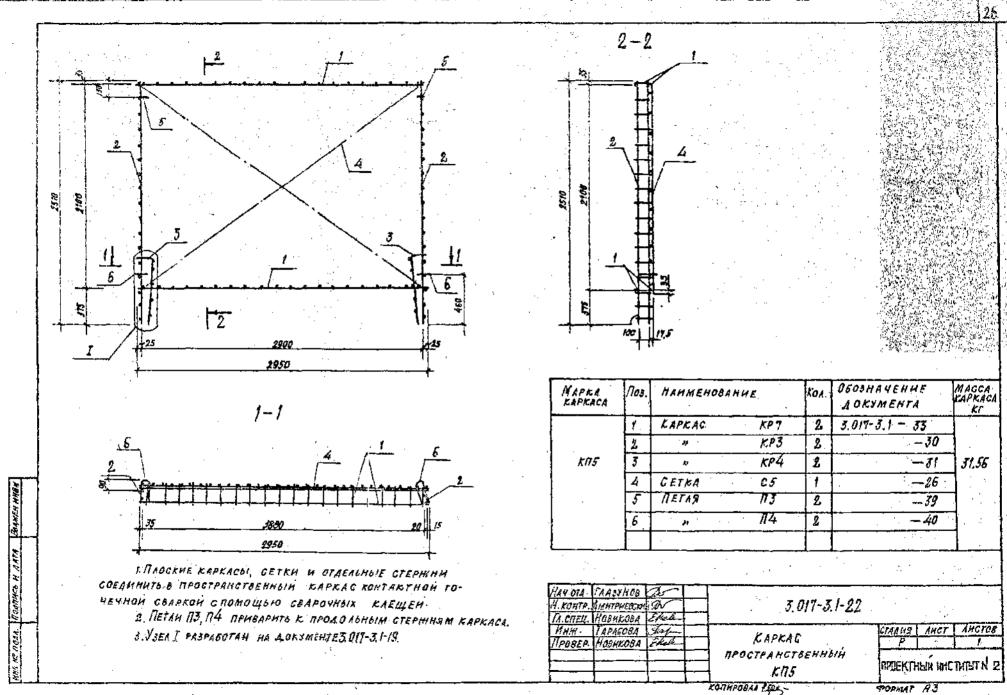
DOLLIE HASIA WELLER

TPOREP. HORHROSA

		-1	4	!		Complete State	
MAPKA KAPKECA	Ποз.	Няименовы	414E		. на 14. кп	Докуменне О Бозняченне	MACCA KAPAACA KE
	1	KAPKRO	KP1	3	3	3.017-3.1 - 29	
	2		KP5	2		- 32	1 .
	3		KP12	2	2	51	7
KII3	4		KP &		2	−30	21,72
Kn4	5	CETKR	<i>c3</i>	1	1	- 25	22.34
	6		<i>C</i> 4	1	1	- 25	7
	7	Ф БА <u>М</u> ; Е= 1735 ;	0,39 KT	4		SES YEFT.	1
	8	\$ 60 m, 8= 2135;	0,47 KF		4	SE3 YEPT	
	9	\$48A-I, E 95;	0,01 HF	8	8	SES YERT]
	10	NETASI	n1	2	2	3.017-3.1 - 3.9	
	11		17%	2	į į.	-40	<u> </u>

3.017-3.1-21

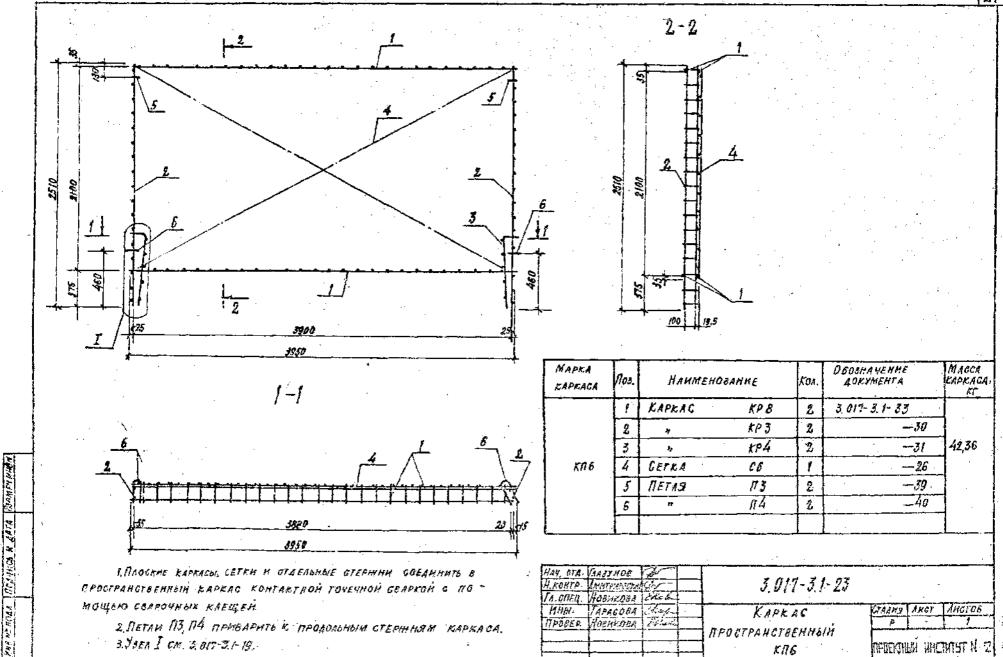
KAPKA C

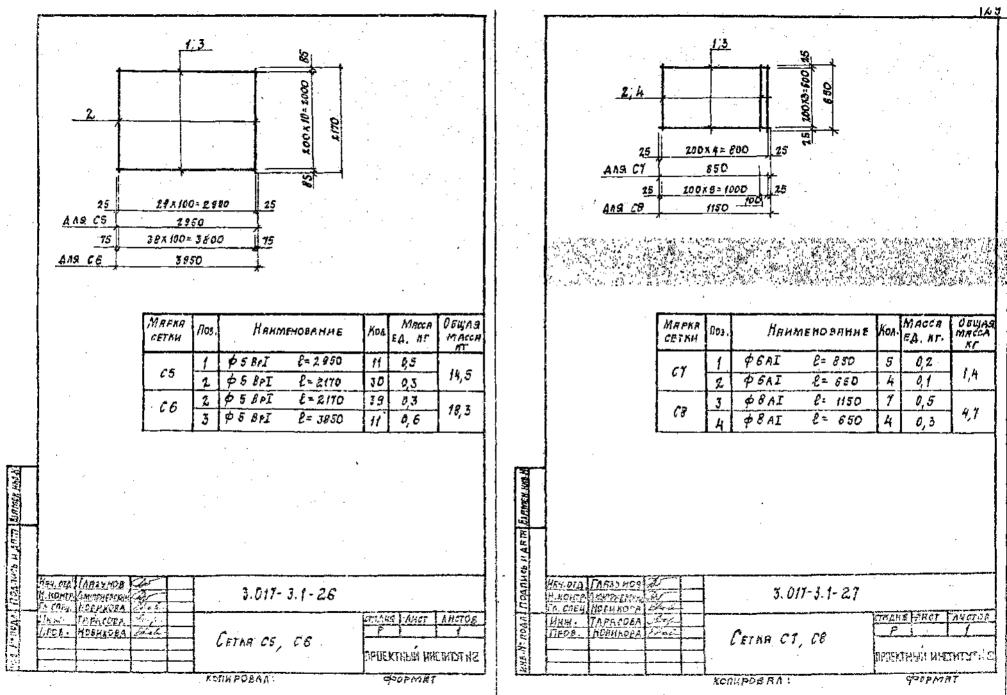

FRAUS NUCT ANGTOD

ROCEPANCES EMBLY

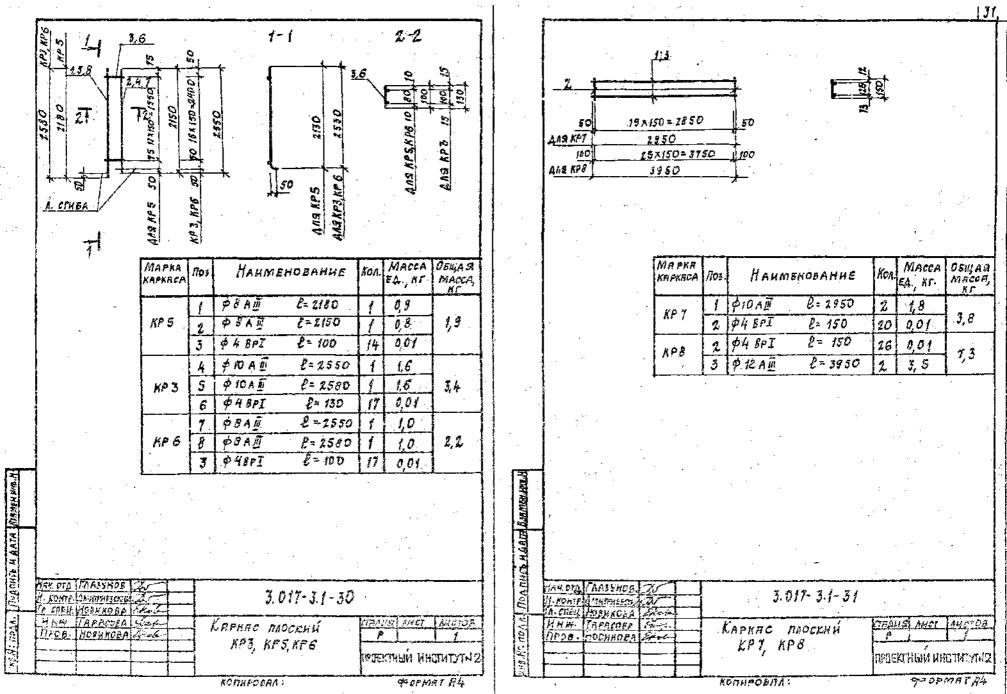
KN3, KN4

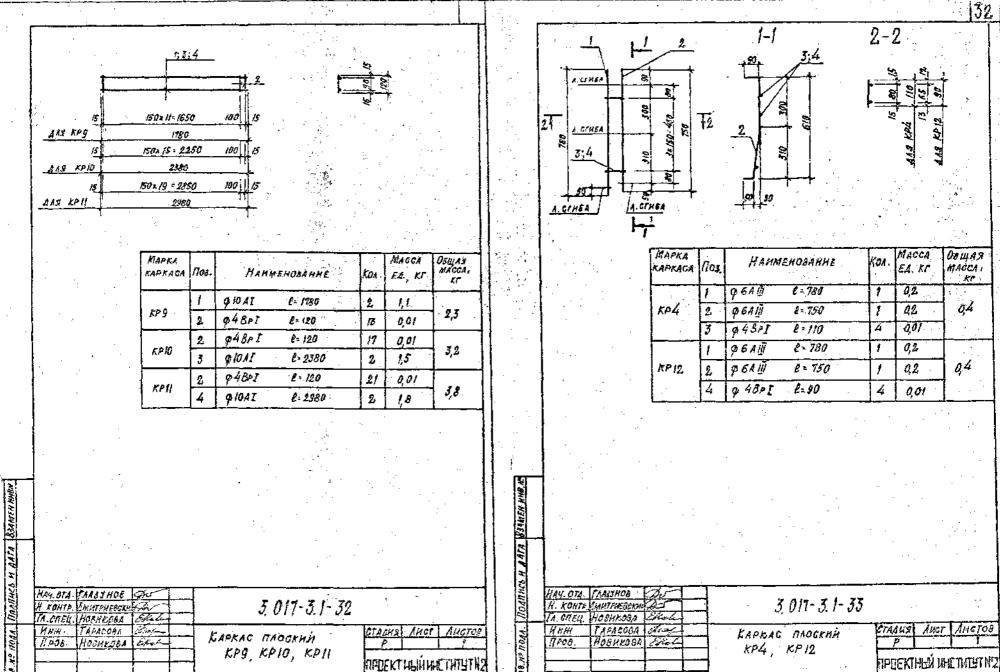
ROCENTY N2


KONHOBRA: QUOPMIT R3

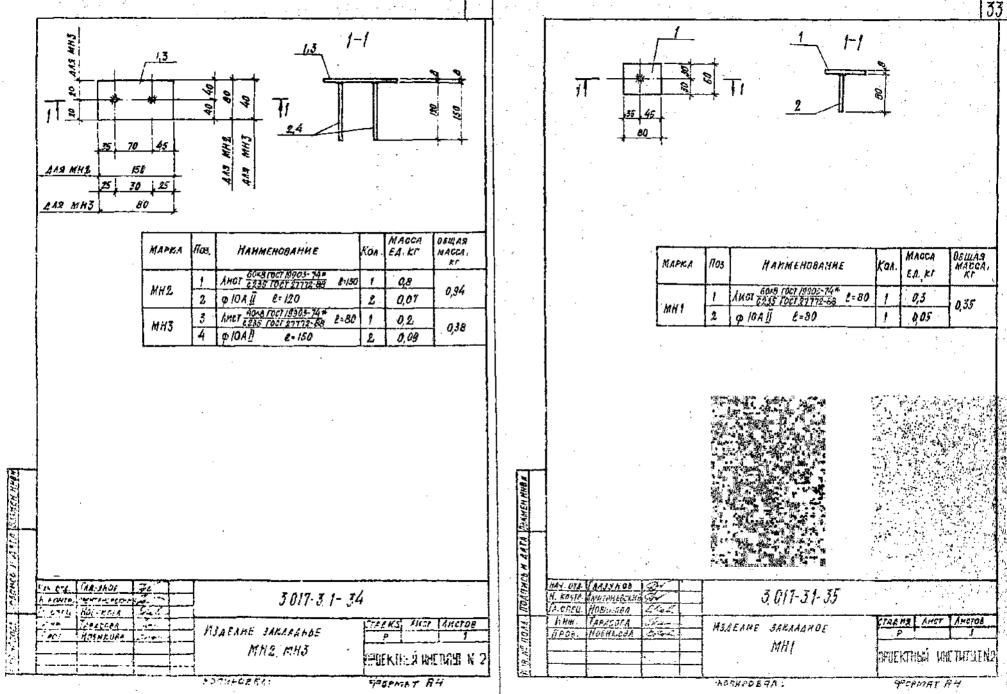


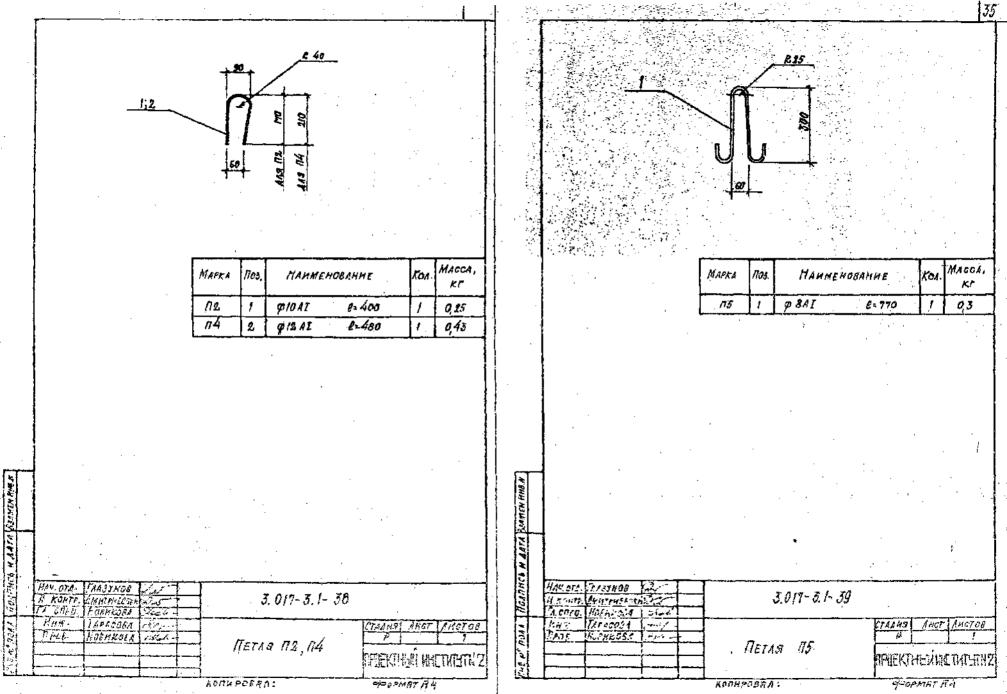
किरम्बर में ह

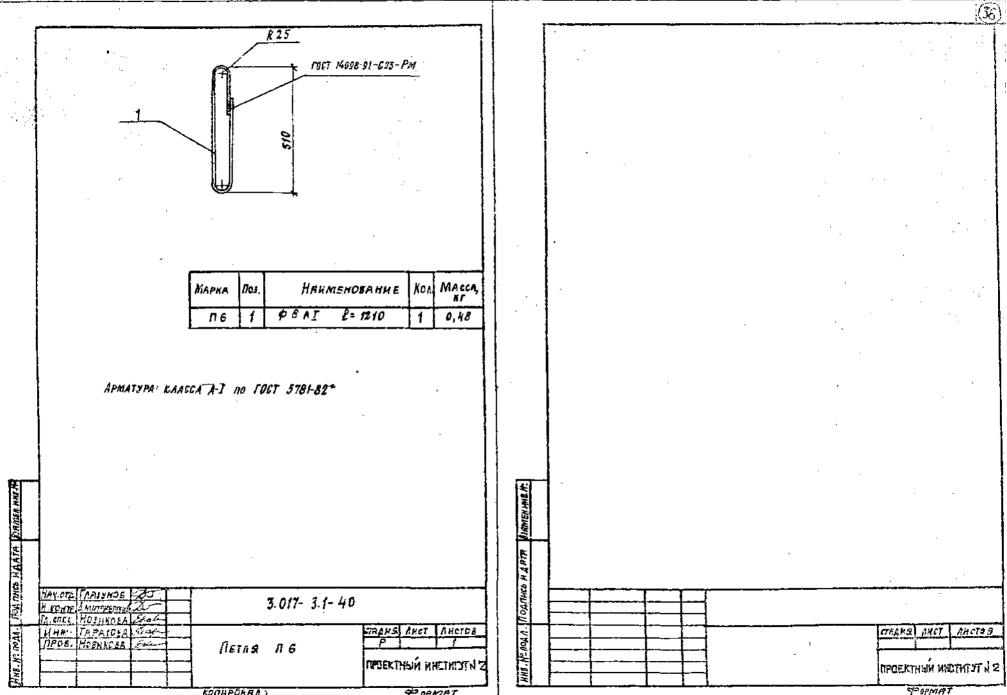

KOMMPOBAR EGIL



KORU ROBAA:


<i>/</i> .	•				7.			٠			İ		· .			*				30
		25 8 C3 15 8 C10	1			200 15 180 15	40 (100A55700 PP					_2 A19_	100	19 × 150 = 1950 1950	0 = 375	*1	,	27 54 8	[35]	
				MRPHI	[703.	Няим	ЕНОВЯНИЕ	Нол.	MACCA Ed., HE	OSHRA MRCCA, NI	1. 4.			MAPAR SRPKRGA	flos.	Наим	EHO BAH HE	Кол	MACCA EG., Hr.	ОБЩАЯ МИССЯ, ИГ
				cg	1/2	ф 5 8 r I ф 5 8 r I	l= 2730 l= 580	8	0,4	3,6	:			KP !	1 2	φ10 A ½ φ48 PI	l= 1550 l= 95	20	1,8	3,8
				cio	3	φ58+I φ58+I	l= 580 l=2960	13	0,1	4,3				KPZ	3	φ 4 B + I φ 12 A <u>@</u>	l= 95 l= 3950	26	0,01	7,2
подпись иделя Винажина	19y 974 1 Koney	inal inap	YHO S IEPTRICI			3.01	17-3.1-28				TONTHOE H ADTA RICHERINA DE	Hey, ota H. Agust	<u>ГЛБ 1 у но 8 г.</u> <u>У тотнеесчий</u> Но ем ко е я		<u> </u>	3. 8	017 - 3. 1 - 2 9			
TOU TOOUSH FRAI	няу отд и контр Гл. спец Инж ПРОВ.	TAPA Hogh	KOBA CDBA (KOBA	scup Exek		Cetha CS	1,010	<i>[*</i>	1	Augd8 1 1.011111 N.S.	VHC. NEMON	<u>Инн.</u> Пров.	TACATOBA TACATOBA PERINGBA	Grap.		Кяежас п КРІ, К		-	ــلــــ	BOTOR THINH
151						ONFOBRA:				MA1.84	ि जि	- [<u>t</u>		٠-,	Копировя	1:	ــــــــــــــــــــــــــــــــــــــ	C)ro	PPMRTR4




TIPEEKTHEЙ WHETVIETNZ FORMAT RA

KARUPANAN FOR 1-

***.													,				34
	55	70 55	69 000 04	1-1	300						_1;2_		E45 AA E35 A4	9 113 7 11 1			
	**************************************	140		******		·			4,		AR 113	106	-				
			-							, 							,
		MAPKA	/Tos.	Наименование	KOA: EA., K	T MAGGA,					MAPEA	/los.	HAMMI	КОВАНИЕ		KOA.	MAGGA.
		мн4		Incr 140×8 (007 (8902-74) 140×8 (007 27772-88 6=	200 1 1,8				10 12 • •		П	1	Ø IOAZ	e= 550		1	0,34
		ner-4	2	9 10 A 1	4 0,1	2.2		1			173	2	9 /2 AI	2-560		1	0,5
CO N AATA BUMEN WHEN							HOD IN BATTA BABHEH HIPBA							· ·			
	HAY OIL TARSTHOE H KOMTO "-UTPHISTOR"			3.017-3.1-36			Полін	R. KOH!	ГЛАЗТНОВ Р. АМИТРИЕВСЕ Ц. НОВИКОВА	NOW			<i>3.017-3.</i>	1-37			
-		· · · / i ~	Из	ДЕЛНЕ ЗАКЛАДНОГ МН4	P	HETHUT N 2	\$ nadd.	Инн. Прав	TAPACORA	William.	Πŧ	TAS .	ПІ, ПЪ		<i>P</i> PUEKTI		AHOTOB 1 1 1 ETUTYTN 2
181	<u> </u>		h tit	PPDAFA:	ode nems	7 84	1 ===				<u>коп</u>	иговя)	ነ :		CHO OPA	NAT A	4

